whisper.cat/weboasis/arcade/chess/3D/fbx/fbx2JSON.py

1884 lines
66 KiB
Python
Raw Normal View History

2023-10-05 23:28:32 +11:00
# @author zfedoran / http://github.com/zfedoran
import os
import sys
import math
import operator
# #####################################################
# Globals
# #####################################################
option_triangulate = True
option_textures = True
option_prefix = True
option_geometry = False
option_default_camera = False
option_default_light = False
converter = None
global_up_vector = None
# #####################################################
# Templates
# #####################################################
def Vector2String(v, no_brackets = False):
if no_brackets:
return '%g,%g' % (v[0], v[1])
else:
return '[ %g, %g ]' % (v[0], v[1])
def Vector3String(v, no_brackets = False):
if no_brackets:
return '%g,%g,%g' % (v[0], v[1], v[2])
else:
return '[ %g, %g, %g ]' % (v[0], v[1], v[2])
def ColorString(c, no_brackets = False):
if no_brackets:
return '%g, %g, %g' % (c[0], c[1], c[2])
else:
return '[ %g, %g, %g ]' % (c[0], c[1], c[2])
def LabelString(s):
return '"%s"' % s
def ArrayString(s):
return '[ %s ]' % s
def PaddingString(n):
output = ""
for i in range(n):
output += "\t"
return output
def BoolString(value):
if value:
return "true"
return "false"
# #####################################################
# Helpers
# #####################################################
def getObjectName(o, force_prefix = False):
if not o:
return ""
prefix = ""
if option_prefix or force_prefix:
prefix = "Object_%s_" % o.GetUniqueID()
return prefix + o.GetName()
def getGeometryName(g, force_prefix = False):
prefix = ""
if option_prefix or force_prefix:
prefix = "Geometry_%s_" % g.GetUniqueID()
return prefix + g.GetName()
def getEmbedName(e, force_prefix = False):
prefix = ""
if option_prefix or force_prefix:
prefix = "Embed_%s_" % e.GetUniqueID()
return prefix + e.GetName()
def getMaterialName(m, force_prefix = False):
prefix = ""
if option_prefix or force_prefix:
prefix = "Material_%s_" % m.GetUniqueID()
return prefix + m.GetName()
def getTextureName(t, force_prefix = False):
texture_file = t.GetFileName()
texture_id = os.path.splitext(os.path.basename(texture_file))[0]
prefix = ""
if option_prefix or force_prefix:
prefix = "Texture_%s_" % t.GetUniqueID()
return prefix + texture_id
def getFogName(f, force_prefix = False):
prefix = ""
if option_prefix or force_prefix:
prefix = "Fog_%s_" % f.GetUniqueID()
return prefix + f.GetName()
def getObjectVisible(n):
return BoolString(True)
def getRadians(v):
return ((v[0]*math.pi)/180, (v[1]*math.pi)/180, (v[2]*math.pi)/180)
def getHex(c):
color = (int(c[0]*255) << 16) + (int(c[1]*255) << 8) + int(c[2]*255)
return color
def setBit(value, position, on):
if on:
mask = 1 << position
return (value | mask)
else:
mask = ~(1 << position)
return (value & mask)
def convert_fbx_color(color):
return [color.mRed, color.mGreen, color.mBlue, color.mAlpha]
def convert_fbx_vec2(v):
return [v[0], v[1]]
def convert_fbx_vec3(v):
return [v[0], v[1], v[2]]
def generate_uvs(uv_layers):
layers = []
for uvs in uv_layers:
layer = ",".join(Vector2String(n, True) for n in uvs)
layers.append(layer)
return ",".join("[%s]" % n for n in layers)
def generateMultiLineString(lines, separator, padding):
cleanLines = []
for i in range(len(lines)):
line = lines[i]
line = PaddingString(padding) + line
cleanLines.append(line)
return separator.join(cleanLines)
def get_up_vector(scene):
global_settings = scene.GetGlobalSettings()
axis_system = global_settings.GetAxisSystem()
up_vector = axis_system.GetUpVector()
tmp = [0,0,0]
tmp[up_vector[0] - 1] = up_vector[1] * 1
return FbxVector4(tmp[0], tmp[1], tmp[2], 1)
def generate_bounding_box(vertices):
minx = 0
miny = 0
minz = 0
maxx = 0
maxy = 0
maxz = 0
for vertex in vertices:
if vertex[0] < minx:
minx = vertex[0]
if vertex[1] < miny:
miny = vertex[1]
if vertex[2] < minz:
minz = vertex[2]
if vertex[0] > maxx:
maxx = vertex[0]
if vertex[1] > maxy:
maxy = vertex[1]
if vertex[2] > maxz:
maxz = vertex[2]
return [minx, miny, minz], [maxx, maxy, maxz]
# #####################################################
# Generate - Triangles
# #####################################################
def triangulate_node_hierarchy(node):
node_attribute = node.GetNodeAttribute();
if node_attribute:
if node_attribute.GetAttributeType() == FbxNodeAttribute.eMesh or \
node_attribute.GetAttributeType() == FbxNodeAttribute.eNurbs or \
node_attribute.GetAttributeType() == FbxNodeAttribute.eNurbsSurface or \
node_attribute.GetAttributeType() == FbxNodeAttribute.ePatch:
converter.TriangulateInPlace(node);
child_count = node.GetChildCount()
for i in range(child_count):
triangulate_node_hierarchy(node.GetChild(i))
def triangulate_scene(scene):
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
triangulate_node_hierarchy(node.GetChild(i))
# #####################################################
# Generate - Material String
# #####################################################
def generate_texture_bindings(material_property, texture_list):
binding_types = {
"DiffuseColor": "map", "DiffuseFactor": "diffuseFactor", "EmissiveColor": "emissiveMap",
"EmissiveFactor": "emissiveFactor", "AmbientColor": "ambientMap", "AmbientFactor": "ambientFactor",
"SpecularColor": "specularMap", "SpecularFactor": "specularFactor", "ShininessExponent": "shininessExponent",
"NormalMap": "normalMap", "Bump": "bumpMap", "TransparentColor": "transparentMap",
"TransparencyFactor": "transparentFactor", "ReflectionColor": "reflectionMap",
"ReflectionFactor": "reflectionFactor", "DisplacementColor": "displacementMap",
"VectorDisplacementColor": "vectorDisplacementMap"
}
if material_property.IsValid():
#Here we have to check if it's layeredtextures, or just textures:
layered_texture_count = material_property.GetSrcObjectCount(FbxLayeredTexture.ClassId)
if layered_texture_count > 0:
for j in range(layered_texture_count):
layered_texture = material_property.GetSrcObject(FbxLayeredTexture.ClassId, j)
texture_count = layered_texture.GetSrcObjectCount(FbxTexture.ClassId)
for k in range(texture_count):
texture = layered_texture.GetSrcObject(FbxTexture.ClassId,k)
if texture:
texture_id = getTextureName(texture, True)
texture_binding = ' "%s": "%s",' % (binding_types[str(material_property.GetName())], texture_id)
texture_list.append(texture_binding)
else:
# no layered texture simply get on the property
texture_count = material_property.GetSrcObjectCount(FbxTexture.ClassId)
for j in range(texture_count):
texture = material_property.GetSrcObject(FbxTexture.ClassId,j)
if texture:
texture_id = getTextureName(texture, True)
texture_binding = ' "%s": "%s",' % (binding_types[str(material_property.GetName())], texture_id)
texture_list.append(texture_binding)
def generate_material_string(material):
#Get the implementation to see if it's a hardware shader.
implementation = GetImplementation(material, "ImplementationHLSL")
implementation_type = "HLSL"
if not implementation:
implementation = GetImplementation(material, "ImplementationCGFX")
implementation_type = "CGFX"
output = []
if implementation:
# This material is a hardware shader, skip it
print("Shader materials are not supported")
return ''
elif material.GetClassId().Is(FbxSurfaceLambert.ClassId):
ambient = str(getHex(material.Ambient.Get()))
diffuse = str(getHex(material.Diffuse.Get()))
emissive = str(getHex(material.Emissive.Get()))
opacity = 1.0 - material.TransparencyFactor.Get()
opacity = 1.0 if opacity == 0 else opacity
opacity = str(opacity)
transparent = BoolString(False)
reflectivity = "1"
output = [
'\t' + LabelString( getMaterialName( material ) ) + ': {',
' "type" : "MeshLambertMaterial",',
' "parameters" : {',
' "color" : ' + diffuse + ',',
' "ambient" : ' + ambient + ',',
' "emissive" : ' + emissive + ',',
' "reflectivity" : ' + reflectivity + ',',
' "transparent" : ' + transparent + ',',
' "opacity" : ' + opacity + ',',
]
elif material.GetClassId().Is(FbxSurfacePhong.ClassId):
ambient = str(getHex(material.Ambient.Get()))
diffuse = str(getHex(material.Diffuse.Get()))
emissive = str(getHex(material.Emissive.Get()))
specular = str(getHex(material.Specular.Get()))
opacity = 1.0 - material.TransparencyFactor.Get()
opacity = 1.0 if opacity == 0 else opacity
opacity = str(opacity)
shininess = str(material.Shininess.Get())
transparent = BoolString(False)
reflectivity = "1"
bumpScale = "1"
output = [
'\t' + LabelString( getMaterialName( material ) ) + ': {',
' "type" : "MeshPhongMaterial",',
' "parameters" : {',
' "color" : ' + diffuse + ',',
' "ambient" : ' + ambient + ',',
' "emissive" : ' + emissive + ',',
' "specular" : ' + specular + ',',
' "shininess" : ' + shininess + ',',
' "bumpScale" : ' + bumpScale + ',',
' "reflectivity" : ' + reflectivity + ',',
' "transparent" : ' + transparent + ',',
' "opacity" : ' + opacity + ',',
]
else:
print("Unknown type of Material")
return ''
if option_textures:
texture_list = []
texture_count = FbxLayerElement.sTypeTextureCount()
for texture_index in range(texture_count):
material_property = material.FindProperty(FbxLayerElement.sTextureChannelNames(texture_index))
generate_texture_bindings(material_property, texture_list)
output += texture_list
wireframe = BoolString(False)
wireframeLinewidth = "1"
output.append(' "wireframe" : ' + wireframe + ',')
output.append(' "wireframeLinewidth" : ' + wireframeLinewidth)
output.append(' }')
output.append('}')
return generateMultiLineString( output, '\n\t\t', 0 )
def generate_proxy_material_string(node, material_names):
output = [
'\t' + LabelString( getMaterialName( node, True ) ) + ': {',
' "type" : "MeshFaceMaterial",',
' "parameters" : {',
' "materials" : ' + ArrayString( ",".join(LabelString(m) for m in material_names) ),
' }',
'}'
]
return generateMultiLineString( output, '\n\t\t', 0 )
# #####################################################
# Parse - Materials
# #####################################################
def extract_materials_from_node(node, material_list):
name = node.GetName()
mesh = node.GetNodeAttribute()
node = None
if mesh:
node = mesh.GetNode()
if node:
material_count = node.GetMaterialCount()
material_names = []
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
#Materials are in an undefined external table
continue
for i in range(material_count):
material = node.GetMaterial(i)
material_names.append(getMaterialName(material))
material_string = generate_material_string(material)
material_list.append(material_string)
if material_count > 1:
proxy_material = generate_proxy_material_string(node, material_names)
material_list.append(proxy_material)
def generate_materials_from_hierarchy(node, material_list):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh:
extract_materials_from_node(node, material_list)
for i in range(node.GetChildCount()):
generate_materials_from_hierarchy(node.GetChild(i), material_list)
def generate_material_list(scene):
material_list = []
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_materials_from_hierarchy(node.GetChild(i), material_list)
return material_list
# #####################################################
# Generate - Texture String
# #####################################################
def generate_texture_string(texture):
#TODO: extract more texture properties
wrap_u = texture.GetWrapModeU()
wrap_v = texture.GetWrapModeV()
offset = texture.GetUVTranslation()
output = [
'\t' + LabelString( getTextureName( texture, True ) ) + ': {',
' "url" : "' + texture.GetFileName() + '",',
' "repeat" : ' + Vector2String( (1,1) ) + ',',
' "offset" : ' + Vector2String( texture.GetUVTranslation() ) + ',',
' "magFilter" : ' + LabelString( "LinearFilter" ) + ',',
' "minFilter" : ' + LabelString( "LinearMipMapLinearFilter" ) + ',',
' "anisotropy" : ' + BoolString( True ),
'}'
]
return generateMultiLineString( output, '\n\t\t', 0 )
# #####################################################
# Parse - Textures
# #####################################################
def extract_material_textures(material_property, texture_list):
if material_property.IsValid():
#Here we have to check if it's layeredtextures, or just textures:
layered_texture_count = material_property.GetSrcObjectCount(FbxLayeredTexture.ClassId)
if layered_texture_count > 0:
for j in range(layered_texture_count):
layered_texture = material_property.GetSrcObject(FbxLayeredTexture.ClassId, j)
texture_count = layered_texture.GetSrcObjectCount(FbxTexture.ClassId)
for k in range(texture_count):
texture = layered_texture.GetSrcObject(FbxTexture.ClassId,k)
if texture:
texture_string = generate_texture_string(texture)
texture_list.append(texture_string)
else:
# no layered texture simply get on the property
texture_count = material_property.GetSrcObjectCount(FbxTexture.ClassId)
for j in range(texture_count):
texture = material_property.GetSrcObject(FbxTexture.ClassId,j)
if texture:
texture_string = generate_texture_string(texture)
texture_list.append(texture_string)
def extract_textures_from_node(node, texture_list):
name = node.GetName()
mesh = node.GetNodeAttribute()
#for all materials attached to this mesh
material_count = mesh.GetNode().GetSrcObjectCount(FbxSurfaceMaterial.ClassId)
for material_index in range(material_count):
material = mesh.GetNode().GetSrcObject(FbxSurfaceMaterial.ClassId, material_index)
#go through all the possible textures types
if material:
texture_count = FbxLayerElement.sTypeTextureCount()
for texture_index in range(texture_count):
material_property = material.FindProperty(FbxLayerElement.sTextureChannelNames(texture_index))
extract_material_textures(material_property, texture_list)
def generate_textures_from_hierarchy(node, texture_list):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh:
extract_textures_from_node(node, texture_list)
for i in range(node.GetChildCount()):
generate_textures_from_hierarchy(node.GetChild(i), texture_list)
def generate_texture_list(scene):
if not option_textures:
return []
texture_list = []
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_textures_from_hierarchy(node.GetChild(i), texture_list)
return texture_list
# #####################################################
# Extract - Fbx Mesh data
# #####################################################
def extract_fbx_vertex_positions(mesh):
control_points_count = mesh.GetControlPointsCount()
control_points = mesh.GetControlPoints()
positions = []
for i in range(control_points_count):
positions.append(convert_fbx_vec3(control_points[i]))
node = mesh.GetNode()
if node and option_geometry:
# FbxMeshes are local to their node, we need the vertices in global space
# when scene nodes are not exported
transform = node.EvaluateGlobalTransform()
transform = FbxMatrix(transform)
for i in range(len(positions)):
v = positions[i]
position = FbxVector4(v[0], v[1], v[2])
position = transform.MultNormalize(position)
positions[i] = convert_fbx_vec3(position)
return positions
def extract_fbx_vertex_normals(mesh):
# eNone The mapping is undetermined.
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
# eByPolygon There can be only one mapping coordinate for the whole polygon.
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
# eAllSame There can be only one mapping coordinate for the whole surface.
layered_normal_indices = []
layered_normal_values = []
poly_count = mesh.GetPolygonCount()
control_points = mesh.GetControlPoints()
for l in range(mesh.GetLayerCount()):
mesh_normals = mesh.GetLayer(l).GetNormals()
if not mesh_normals:
continue
normals_array = mesh_normals.GetDirectArray()
normals_count = normals_array.GetCount()
if normals_count == 0:
continue
normal_indices = []
normal_values = []
# values
for i in range(normals_count):
normal = convert_fbx_vec3(normals_array.GetAt(i))
normal_values.append(normal)
node = mesh.GetNode()
if node and option_geometry:
# FbxMeshes are local to their node, we need the normals in global space
# when scene nodes are not exported
transform = node.EvaluateGlobalTransform()
transform.SetT(FbxVector4(0,0,0,0))
transform = FbxMatrix(transform)
for i in range(len(normal_values)):
n = normal_values[i]
normal = FbxVector4(n[0], n[1], n[2])
normal = transform.MultNormalize(normal)
normal_values[i] = convert_fbx_vec3(normal)
# indices
vertexId = 0
for p in range(poly_count):
poly_size = mesh.GetPolygonSize(p)
poly_normals = []
for v in range(poly_size):
control_point_index = mesh.GetPolygonVertex(p, v)
if mesh_normals.GetMappingMode() == FbxLayerElement.eByControlPoint:
if mesh_normals.GetReferenceMode() == FbxLayerElement.eDirect:
poly_normals.append(control_point_index)
elif mesh_normals.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_normals.GetIndexArray().GetAt(control_point_index)
poly_normals.append(index)
elif mesh_normals.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
if mesh_normals.GetReferenceMode() == FbxLayerElement.eDirect:
poly_normals.append(vertexId)
elif mesh_normals.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_normals.GetIndexArray().GetAt(vertexId)
poly_normals.append(index)
elif mesh_normals.GetMappingMode() == FbxLayerElement.eByPolygon or \
mesh_normals.GetMappingMode() == FbxLayerElement.eAllSame or \
mesh_normals.GetMappingMode() == FbxLayerElement.eNone:
print("unsupported normal mapping mode for polygon vertex")
vertexId += 1
normal_indices.append(poly_normals)
layered_normal_values.append(normal_values)
layered_normal_indices.append(normal_indices)
normal_values = []
normal_indices = []
# Three.js only supports one layer of normals
if len(layered_normal_values) > 0:
normal_values = layered_normal_values[0]
normal_indices = layered_normal_indices[0]
return normal_values, normal_indices
def extract_fbx_vertex_colors(mesh):
# eNone The mapping is undetermined.
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
# eByPolygon There can be only one mapping coordinate for the whole polygon.
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
# eAllSame There can be only one mapping coordinate for the whole surface.
layered_color_indices = []
layered_color_values = []
poly_count = mesh.GetPolygonCount()
control_points = mesh.GetControlPoints()
for l in range(mesh.GetLayerCount()):
mesh_colors = mesh.GetLayer(l).GetVertexColors()
if not mesh_colors:
continue
colors_array = mesh_colors.GetDirectArray()
colors_count = colors_array.GetCount()
if colors_count == 0:
continue
color_indices = []
color_values = []
# values
for i in range(colors_count):
color = convert_fbx_color(colors_array.GetAt(i))
color_values.append(color)
# indices
vertexId = 0
for p in range(poly_count):
poly_size = mesh.GetPolygonSize(p)
poly_colors = []
for v in range(poly_size):
control_point_index = mesh.GetPolygonVertex(p, v)
if mesh_colors.GetMappingMode() == FbxLayerElement.eByControlPoint:
if mesh_colors.GetReferenceMode() == FbxLayerElement.eDirect:
poly_colors.append(control_point_index)
elif mesh_colors.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_colors.GetIndexArray().GetAt(control_point_index)
poly_colors.append(index)
elif mesh_colors.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
if mesh_colors.GetReferenceMode() == FbxLayerElement.eDirect:
poly_colors.append(vertexId)
elif mesh_colors.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_colors.GetIndexArray().GetAt(vertexId)
poly_colors.append(index)
elif mesh_colors.GetMappingMode() == FbxLayerElement.eByPolygon or \
mesh_colors.GetMappingMode() == FbxLayerElement.eAllSame or \
mesh_colors.GetMappingMode() == FbxLayerElement.eNone:
print("unsupported color mapping mode for polygon vertex")
vertexId += 1
color_indices.append(poly_colors)
color_values = []
color_indices = []
# Three.js only supports one layer of colors
if len(layered_color_values) > 0:
color_values = layered_color_values[0]
color_indices = layered_color_indices[0]
return color_values, color_indices
def extract_fbx_vertex_uvs(mesh):
# eNone The mapping is undetermined.
# eByControlPoint There will be one mapping coordinate for each surface control point/vertex.
# eByPolygonVertex There will be one mapping coordinate for each vertex, for every polygon of which it is a part. This means that a vertex will have as many mapping coordinates as polygons of which it is a part.
# eByPolygon There can be only one mapping coordinate for the whole polygon.
# eByEdge There will be one mapping coordinate for each unique edge in the mesh. This is meant to be used with smoothing layer elements.
# eAllSame There can be only one mapping coordinate for the whole surface.
layered_uv_indices = []
layered_uv_values = []
poly_count = mesh.GetPolygonCount()
control_points = mesh.GetControlPoints()
for l in range(mesh.GetLayerCount()):
mesh_uvs = mesh.GetLayer(l).GetUVs()
if not mesh_uvs:
continue
uvs_array = mesh_uvs.GetDirectArray()
uvs_count = uvs_array.GetCount()
if uvs_count == 0:
continue
uv_indices = []
uv_values = []
# values
for i in range(uvs_count):
uv = convert_fbx_vec2(uvs_array.GetAt(i))
uv_values.append(uv)
# indices
vertexId = 0
for p in range(poly_count):
poly_size = mesh.GetPolygonSize(p)
poly_uvs = []
for v in range(poly_size):
control_point_index = mesh.GetPolygonVertex(p, v)
if mesh_uvs.GetMappingMode() == FbxLayerElement.eByControlPoint:
if mesh_uvs.GetReferenceMode() == FbxLayerElement.eDirect:
poly_uvs.append(control_point_index)
elif mesh_uvs.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
index = mesh_uvs.GetIndexArray().GetAt(control_point_index)
poly_uvs.append(index)
elif mesh_uvs.GetMappingMode() == FbxLayerElement.eByPolygonVertex:
uv_texture_index = mesh.GetTextureUVIndex(p, v)
if mesh_uvs.GetReferenceMode() == FbxLayerElement.eDirect or \
mesh_uvs.GetReferenceMode() == FbxLayerElement.eIndexToDirect:
poly_uvs.append(uv_texture_index)
elif mesh_uvs.GetMappingMode() == FbxLayerElement.eByPolygon or \
mesh_uvs.GetMappingMode() == FbxLayerElement.eAllSame or \
mesh_uvs.GetMappingMode() == FbxLayerElement.eNone:
print("unsupported uv mapping mode for polygon vertex")
vertexId += 1
uv_indices.append(poly_uvs)
layered_uv_values.append(uv_values)
layered_uv_indices.append(uv_indices)
return layered_uv_values, layered_uv_indices
# #####################################################
# Generate - Mesh String (for scene output)
# #####################################################
def generate_mesh_string_for_scene_output(node):
mesh = node.GetNodeAttribute()
mesh_list = [ mesh ]
vertices, vertex_offsets = process_mesh_vertices(mesh_list)
materials, material_offsets = process_mesh_materials(mesh_list)
normals_to_indices = generate_unique_normals_dictionary(mesh_list)
colors_to_indices = generate_unique_colors_dictionary(mesh_list)
uvs_to_indices_list = generate_unique_uvs_dictionary_layers(mesh_list)
normal_values = generate_normals_from_dictionary(normals_to_indices)
color_values = generate_colors_from_dictionary(colors_to_indices)
uv_values = generate_uvs_from_dictionary_layers(uvs_to_indices_list)
faces = process_mesh_polygons(mesh_list,
normals_to_indices,
colors_to_indices,
uvs_to_indices_list,
vertex_offsets,
material_offsets)
nuvs = []
for layer_index, uvs in enumerate(uv_values):
nuvs.append(str(len(uvs)))
nvertices = len(vertices)
nnormals = len(normal_values)
ncolors = len(color_values)
nfaces = len(faces)
nuvs = ",".join(nuvs)
aabb_min, aabb_max = generate_bounding_box(vertices)
aabb_min = ",".join(str(f) for f in aabb_min)
aabb_max = ",".join(str(f) for f in aabb_max)
vertices = ",".join(Vector3String(v, True) for v in vertices)
normals = ",".join(Vector3String(v, True) for v in normal_values)
colors = ",".join(Vector3String(v, True) for v in color_values)
faces = ",".join(faces)
uvs = generate_uvs(uv_values)
output = [
'\t' + LabelString( getEmbedName( node, True ) ) + ' : {',
' "metadata" : {',
' "vertices" : ' + str(nvertices) + ',',
' "normals" : ' + str(nnormals) + ',',
' "colors" : ' + str(ncolors) + ',',
' "faces" : ' + str(nfaces) + ',',
' "uvs" : ' + ArrayString(nuvs),
' },',
' "boundingBox" : {',
' "min" : ' + ArrayString(aabb_min) + ',',
' "max" : ' + ArrayString(aabb_max),
' },',
' "scale" : ' + str( 1 ) + ',',
' "materials" : ' + ArrayString("") + ',',
' "vertices" : ' + ArrayString(vertices) + ',',
' "normals" : ' + ArrayString(normals) + ',',
' "colors" : ' + ArrayString(colors) + ',',
' "uvs" : ' + ArrayString(uvs) + ',',
' "faces" : ' + ArrayString(faces),
'}'
]
return generateMultiLineString( output, '\n\t\t', 0 )
# #####################################################
# Generate - Mesh String (for non-scene output)
# #####################################################
def generate_mesh_string_for_non_scene_output(scene):
mesh_list = generate_mesh_list(scene)
vertices, vertex_offsets = process_mesh_vertices(mesh_list)
materials, material_offsets = process_mesh_materials(mesh_list)
normals_to_indices = generate_unique_normals_dictionary(mesh_list)
colors_to_indices = generate_unique_colors_dictionary(mesh_list)
uvs_to_indices_list = generate_unique_uvs_dictionary_layers(mesh_list)
normal_values = generate_normals_from_dictionary(normals_to_indices)
color_values = generate_colors_from_dictionary(colors_to_indices)
uv_values = generate_uvs_from_dictionary_layers(uvs_to_indices_list)
faces = process_mesh_polygons(mesh_list,
normals_to_indices,
colors_to_indices,
uvs_to_indices_list,
vertex_offsets,
material_offsets)
nuvs = []
for layer_index, uvs in enumerate(uv_values):
nuvs.append(str(len(uvs)))
nvertices = len(vertices)
nnormals = len(normal_values)
ncolors = len(color_values)
nfaces = len(faces)
nuvs = ",".join(nuvs)
aabb_min, aabb_max = generate_bounding_box(vertices)
aabb_min = ",".join(str(f) for f in aabb_min)
aabb_max = ",".join(str(f) for f in aabb_max)
vertices = ",".join(Vector3String(v, True) for v in vertices)
normals = ",".join(Vector3String(v, True) for v in normal_values)
colors = ",".join(Vector3String(v, True) for v in color_values)
faces = ",".join(faces)
uvs = generate_uvs(uv_values)
output = [
'{',
' "metadata" : {',
' "formatVersion" : 3.2,',
' "type" : "geometry",',
' "generatedBy" : "convert-to-threejs.py"' + ',',
' "vertices" : ' + str(nvertices) + ',',
' "normals" : ' + str(nnormals) + ',',
' "colors" : ' + str(ncolors) + ',',
' "faces" : ' + str(nfaces) + ',',
' "uvs" : ' + ArrayString(nuvs),
' },',
' "boundingBox" : {',
' "min" : ' + ArrayString(aabb_min) + ',',
' "max" : ' + ArrayString(aabb_max),
' },',
' "scale" : ' + str( 1 ) + ',',
' "materials" : ' + ArrayString("") + ',',
' "vertices" : ' + ArrayString(vertices) + ',',
' "normals" : ' + ArrayString(normals) + ',',
' "colors" : ' + ArrayString(colors) + ',',
' "uvs" : ' + ArrayString(uvs) + ',',
' "faces" : ' + ArrayString(faces),
'}'
]
return generateMultiLineString( output, '\n', 0 )
# #####################################################
# Process - Mesh Geometry
# #####################################################
def generate_normal_key(normal):
return (round(normal[0], 6), round(normal[1], 6), round(normal[2], 6))
def generate_color_key(color):
return getHex(color)
def generate_uv_key(uv):
return (round(uv[0], 6), round(uv[1], 6))
def append_non_duplicate_uvs(source_uvs, dest_uvs, counts):
source_layer_count = len(source_uvs)
for layer_index in range(source_layer_count):
dest_layer_count = len(dest_uvs)
if dest_layer_count <= layer_index:
dest_uv_layer = {}
count = 0
dest_uvs.append(dest_uv_layer)
counts.append(count)
else:
dest_uv_layer = dest_uvs[layer_index]
count = counts[layer_index]
source_uv_layer = source_uvs[layer_index]
for uv in source_uv_layer:
key = generate_uv_key(uv)
if key not in dest_uv_layer:
dest_uv_layer[key] = count
count += 1
counts[layer_index] = count
return counts
def generate_unique_normals_dictionary(mesh_list):
normals_dictionary = {}
nnormals = 0
# Merge meshes, remove duplicate data
for mesh in mesh_list:
node = mesh.GetNode()
normal_values, normal_indices = extract_fbx_vertex_normals(mesh)
if len(normal_values) > 0:
for normal in normal_values:
key = generate_normal_key(normal)
if key not in normals_dictionary:
normals_dictionary[key] = nnormals
nnormals += 1
return normals_dictionary
def generate_unique_colors_dictionary(mesh_list):
colors_dictionary = {}
ncolors = 0
# Merge meshes, remove duplicate data
for mesh in mesh_list:
color_values, color_indices = extract_fbx_vertex_colors(mesh)
if len(color_values) > 0:
for color in color_values:
key = generate_color_key(color)
if key not in colors_dictionary:
colors_dictionary[key] = count
count += 1
return colors_dictionary
def generate_unique_uvs_dictionary_layers(mesh_list):
uvs_dictionary_layers = []
nuvs_list = []
# Merge meshes, remove duplicate data
for mesh in mesh_list:
uv_values, uv_indices = extract_fbx_vertex_uvs(mesh)
if len(uv_values) > 0:
nuvs_list = append_non_duplicate_uvs(uv_values, uvs_dictionary_layers, nuvs_list)
return uvs_dictionary_layers
def generate_normals_from_dictionary(normals_dictionary):
normal_values = []
for key, index in sorted(normals_dictionary.items(), key = operator.itemgetter(1)):
normal_values.append(key)
return normal_values
def generate_colors_from_dictionary(colors_dictionary):
color_values = []
for key, index in sorted(colors_dictionary.items(), key = operator.itemgetter(1)):
color_values.append(key)
return color_values
def generate_uvs_from_dictionary_layers(uvs_dictionary_layers):
uv_values = []
for uvs_dictionary in uvs_dictionary_layers:
uv_values_layer = []
for key, index in sorted(uvs_dictionary.items(), key = operator.itemgetter(1)):
uv_values_layer.append(key)
uv_values.append(uv_values_layer)
return uv_values
def generate_normal_indices_for_poly(poly_index, mesh_normal_values, mesh_normal_indices, normals_to_indices):
if len(mesh_normal_indices) <= 0:
return []
poly_normal_indices = mesh_normal_indices[poly_index]
poly_size = len(poly_normal_indices)
output_poly_normal_indices = []
for v in range(poly_size):
normal_index = poly_normal_indices[v]
normal_value = mesh_normal_values[normal_index]
key = generate_normal_key(normal_value)
output_index = normals_to_indices[key]
output_poly_normal_indices.append(output_index)
return output_poly_normal_indices
def generate_color_indices_for_poly(poly_index, mesh_color_values, mesh_color_indices, colors_to_indices):
if len(mesh_color_indices) <= 0:
return []
poly_color_indices = mesh_color_indices[poly_index]
poly_size = len(poly_color_indices)
output_poly_color_indices = []
for v in range(poly_size):
color_index = poly_color_indices[v]
color_value = mesh_color_values[color_index]
key = generate_color_key(color_value)
output_index = colors_to_indices[key]
output_poly_color_indices.append(output_index)
return output_poly_color_indices
def generate_uv_indices_for_poly(poly_index, mesh_uv_values, mesh_uv_indices, uvs_to_indices):
if len(mesh_uv_indices) <= 0:
return []
poly_uv_indices = mesh_uv_indices[poly_index]
poly_size = len(poly_uv_indices)
output_poly_uv_indices = []
for v in range(poly_size):
uv_index = poly_uv_indices[v]
uv_value = mesh_uv_values[uv_index]
key = generate_uv_key(uv_value)
output_index = uvs_to_indices[key]
output_poly_uv_indices.append(output_index)
return output_poly_uv_indices
def process_mesh_vertices(mesh_list):
vertex_offset = 0
vertex_offset_list = [0]
vertices = []
for mesh in mesh_list:
node = mesh.GetNode()
mesh_vertices = extract_fbx_vertex_positions(mesh)
vertices.extend(mesh_vertices[:])
vertex_offset += len(mesh_vertices)
vertex_offset_list.append(vertex_offset)
return vertices, vertex_offset_list
def process_mesh_materials(mesh_list):
material_offset = 0
material_offset_list = [0]
materials_list = []
#TODO: remove duplicate mesh references
for mesh in mesh_list:
node = mesh.GetNode()
material_count = node.GetMaterialCount()
if material_count > 0:
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
#Materials are in an undefined external table
continue
for i in range(material_count):
material = node.GetMaterial(i)
materials_list.append( material )
material_offset += material_count
material_offset_list.append(material_offset)
return materials_list, material_offset_list
def process_mesh_polygons(mesh_list, normals_to_indices, colors_to_indices, uvs_to_indices_list, vertex_offset_list, material_offset_list):
faces = []
for mesh_index in range(len(mesh_list)):
mesh = mesh_list[mesh_index]
poly_count = mesh.GetPolygonCount()
control_points = mesh.GetControlPoints()
normal_values, normal_indices = extract_fbx_vertex_normals(mesh)
color_values, color_indices = extract_fbx_vertex_colors(mesh)
uv_values_layers, uv_indices_layers = extract_fbx_vertex_uvs(mesh)
for poly_index in range(poly_count):
poly_size = mesh.GetPolygonSize(poly_index)
face_normals = generate_normal_indices_for_poly(poly_index, normal_values, normal_indices, normals_to_indices)
face_colors = generate_color_indices_for_poly(poly_index, color_values, color_indices, colors_to_indices)
face_uv_layers = []
for l in range(len(uv_indices_layers)):
uv_values = uv_values_layers[l]
uv_indices = uv_indices_layers[l]
face_uv_indices = generate_uv_indices_for_poly(poly_index, uv_values, uv_indices, uvs_to_indices_list[l])
face_uv_layers.append(face_uv_indices)
face_vertices = []
for vertex_index in range(poly_size):
control_point_index = mesh.GetPolygonVertex(poly_index, vertex_index)
face_vertices.append(control_point_index)
#TODO: assign a default material to any mesh without one
if len(material_offset_list) <= mesh_index:
material_offset = 0
else:
material_offset = material_offset_list[mesh_index]
vertex_offset = vertex_offset_list[mesh_index]
face = generate_mesh_face(mesh,
poly_index,
face_vertices,
face_normals,
face_colors,
face_uv_layers,
vertex_offset,
material_offset)
faces.append(face)
return faces
def generate_mesh_face(mesh, polygon_index, vertex_indices, normals, colors, uv_layers, vertex_offset, material_offset):
isTriangle = ( len(vertex_indices) == 3 )
nVertices = 3 if isTriangle else 4
hasMaterial = False
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
hasMaterial = True
break
hasFaceUvs = False
hasFaceVertexUvs = len(uv_layers) > 0
hasFaceNormals = False
hasFaceVertexNormals = len(normals) > 0
hasFaceColors = False
hasFaceVertexColors = len(colors) > 0
faceType = 0
faceType = setBit(faceType, 0, not isTriangle)
faceType = setBit(faceType, 1, hasMaterial)
faceType = setBit(faceType, 2, hasFaceUvs)
faceType = setBit(faceType, 3, hasFaceVertexUvs)
faceType = setBit(faceType, 4, hasFaceNormals)
faceType = setBit(faceType, 5, hasFaceVertexNormals)
faceType = setBit(faceType, 6, hasFaceColors)
faceType = setBit(faceType, 7, hasFaceVertexColors)
faceData = []
# order is important, must match order in JSONLoader
# face type
# vertex indices
# material index
# face uvs index
# face vertex uvs indices
# face color index
# face vertex colors indices
faceData.append(faceType)
tmp = []
for i in range(nVertices):
tmp.append(vertex_indices[i])
index = vertex_indices[i] + vertex_offset
faceData.append(index)
if hasMaterial:
material_id = 0
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
material_id = materials.GetIndexArray().GetAt(polygon_index)
break
material_id += material_offset
faceData.append( material_id )
if hasFaceVertexUvs:
for polygon_uvs in uv_layers:
for i in range(nVertices):
index = polygon_uvs[i]
faceData.append(index)
if hasFaceVertexNormals:
for i in range(nVertices):
index = normals[i]
faceData.append(index)
if hasFaceVertexColors:
for i in range(nVertices):
index = colors[i]
faceData.append(index)
return ",".join( map(str, faceData) )
# #####################################################
# Generate - Mesh List
# #####################################################
def generate_mesh_list_from_hierarchy(node, mesh_list):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh or \
attribute_type == FbxNodeAttribute.eNurbs or \
attribute_type == FbxNodeAttribute.eNurbsSurface or \
attribute_type == FbxNodeAttribute.ePatch:
if attribute_type != FbxNodeAttribute.eMesh:
converter.TriangulateInPlace(node);
mesh_list.append(node.GetNodeAttribute())
for i in range(node.GetChildCount()):
generate_mesh_list_from_hierarchy(node.GetChild(i), mesh_list)
def generate_mesh_list(scene):
mesh_list = []
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_mesh_list_from_hierarchy(node.GetChild(i), mesh_list)
return mesh_list
# #####################################################
# Generate - Embeds
# #####################################################
def generate_embed_list_from_hierarchy(node, embed_list):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh or \
attribute_type == FbxNodeAttribute.eNurbs or \
attribute_type == FbxNodeAttribute.eNurbsSurface or \
attribute_type == FbxNodeAttribute.ePatch:
if attribute_type != FbxNodeAttribute.eMesh:
converter.TriangulateInPlace(node);
embed_string = generate_mesh_string_for_scene_output(node)
embed_list.append(embed_string)
for i in range(node.GetChildCount()):
generate_embed_list_from_hierarchy(node.GetChild(i), embed_list)
def generate_embed_list(scene):
embed_list = []
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_embed_list_from_hierarchy(node.GetChild(i), embed_list)
return embed_list
# #####################################################
# Generate - Geometries
# #####################################################
def generate_geometry_string(node):
output = [
'\t' + LabelString( getGeometryName( node, True ) ) + ' : {',
' "type" : "embedded",',
' "id" : ' + LabelString( getEmbedName( node, True ) ),
'}'
]
return generateMultiLineString( output, '\n\t\t', 0 )
def generate_geometry_list_from_hierarchy(node, geometry_list):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh:
geometry_string = generate_geometry_string(node)
geometry_list.append(geometry_string)
for i in range(node.GetChildCount()):
generate_geometry_list_from_hierarchy(node.GetChild(i), geometry_list)
def generate_geometry_list(scene):
geometry_list = []
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_geometry_list_from_hierarchy(node.GetChild(i), geometry_list)
return geometry_list
# #####################################################
# Generate - Camera Names
# #####################################################
def generate_camera_name_list_from_hierarchy(node, camera_list):
if node.GetNodeAttribute() == None:
pass
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eCamera:
camera_string = getObjectName(node)
camera_list.append(camera_string)
for i in range(node.GetChildCount()):
generate_camera_name_list_from_hierarchy(node.GetChild(i), camera_list)
def generate_camera_name_list(scene):
camera_list = []
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
generate_camera_name_list_from_hierarchy(node.GetChild(i), camera_list)
return camera_list
# #####################################################
# Generate - Light Object
# #####################################################
def generate_default_light_string(padding):
direction = (1,1,1)
color = (1,1,1)
intensity = 80.0
output = [
'\t\t' + LabelString( 'default_light' ) + ' : {',
' "type" : "DirectionalLight",',
' "color" : ' + str(getHex(color)) + ',',
' "intensity" : ' + str(intensity/100.0) + ',',
' "direction" : ' + Vector3String( direction ) + ',',
' "target" : ' + LabelString( getObjectName( None ) ),
' }'
]
return generateMultiLineString( output, '\n\t\t', padding )
def generate_light_string(node, padding):
light = node.GetNodeAttribute()
light_types = ["point", "directional", "spot", "area", "volume"]
light_type = light_types[light.LightType.Get()]
transform = node.EvaluateLocalTransform()
position = transform.GetT()
output = []
if light_type == "directional":
# Three.js directional lights emit light from a point in 3d space to a target node or the origin.
# When there is no target, we need to take a point, one unit away from the origin, and move it
# into the right location so that the origin acts like the target
if node.GetTarget():
direction = position
else:
translation = FbxVector4(0,0,0,0)
scale = FbxVector4(1,1,1,1)
rotation = transform.GetR()
matrix = FbxMatrix(translation, rotation, scale)
direction = matrix.MultNormalize(global_up_vector)
output = [
'\t\t' + LabelString( getObjectName( node ) ) + ' : {',
' "type" : "DirectionalLight",',
' "color" : ' + str(getHex(light.Color.Get())) + ',',
' "intensity" : ' + str(light.Intensity.Get()/100.0) + ',',
' "direction" : ' + Vector3String( direction ) + ',',
' "target" : ' + LabelString( getObjectName( node.GetTarget() ) ) + ( ',' if node.GetChildCount() > 0 else '' )
]
elif light_type == "point":
output = [
'\t\t' + LabelString( getObjectName( node ) ) + ' : {',
' "type" : "PointLight",',
' "color" : ' + str(getHex(light.Color.Get())) + ',',
' "intensity" : ' + str(light.Intensity.Get()/100.0) + ',',
' "position" : ' + Vector3String( position ) + ',',
' "distance" : ' + str(light.FarAttenuationEnd.Get()) + ( ',' if node.GetChildCount() > 0 else '' )
]
elif light_type == "spot":
output = [
'\t\t' + LabelString( getObjectName( node ) ) + ' : {',
' "type" : "SpotLight",',
' "color" : ' + str(getHex(light.Color.Get())) + ',',
' "intensity" : ' + str(light.Intensity.Get()/100.0) + ',',
' "position" : ' + Vector3String( position ) + ',',
' "distance" : ' + str(light.FarAttenuationEnd.Get()) + ',',
' "angle" : ' + str((light.OuterAngle.Get()*math.pi)/180) + ',',
' "exponent" : ' + str(light.DecayType.Get()) + ',',
' "target" : ' + LabelString( getObjectName( node.GetTarget() ) ) + ( ',' if node.GetChildCount() > 0 else '' )
]
return generateMultiLineString( output, '\n\t\t', padding )
def generate_ambient_light_string(scene):
scene_settings = scene.GetGlobalSettings()
ambient_color = scene_settings.GetAmbientColor()
ambient_color = (ambient_color.mRed, ambient_color.mGreen, ambient_color.mBlue)
if ambient_color[0] == 0 and ambient_color[1] == 0 and ambient_color[2] == 0:
return None
class AmbientLight:
def GetName(self):
return "AmbientLight"
node = AmbientLight()
output = [
'\t\t' + LabelString( getObjectName( node ) ) + ' : {',
' "type" : "AmbientLight",',
' "color" : ' + str(getHex(ambient_color)),
'}'
]
return generateMultiLineString( output, '\n\t\t', 0 )
# #####################################################
# Generate - Camera Object
# #####################################################
def generate_default_camera_string(padding):
position = (100, 100, 100)
near = 0.1
far = 1000
fov = 75
output = [
'\t\t' + LabelString( 'default_camera' ) + ' : {',
' "type" : "PerspectiveCamera",',
' "fov" : ' + str(fov) + ',',
' "near" : ' + str(near) + ',',
' "far" : ' + str(far) + ',',
' "position" : ' + Vector3String( position ),
' }'
]
return generateMultiLineString( output, '\n\t\t', padding )
def generate_camera_string(node, padding):
camera = node.GetNodeAttribute()
target_node = node.GetTarget()
target = ""
if target_node:
transform = target.EvaluateLocalTransform()
target = transform.GetT()
else:
target = camera.InterestPosition.Get()
position = camera.Position.Get()
projection_types = [ "perspective", "orthogonal" ]
projection = projection_types[camera.ProjectionType.Get()]
near = camera.NearPlane.Get()
far = camera.FarPlane.Get()
output = []
if projection == "perspective":
aspect = camera.PixelAspectRatio.Get()
fov = camera.FieldOfView.Get()
output = [
'\t\t' + LabelString( getObjectName( node ) ) + ' : {',
' "type" : "PerspectiveCamera",',
' "fov" : ' + str(fov) + ',',
' "aspect" : ' + str(aspect) + ',',
' "near" : ' + str(near) + ',',
' "far" : ' + str(far) + ',',
' "position" : ' + Vector3String( position ) + ( ',' if node.GetChildCount() > 0 else '' )
]
elif projection == "orthogonal":
left = ""
right = ""
top = ""
bottom = ""
output = [
'\t\t' + LabelString( getObjectName( node ) ) + ' : {',
' "type" : "OrthographicCamera",',
' "left" : ' + left + ',',
' "right" : ' + right + ',',
' "top" : ' + top + ',',
' "bottom" : ' + bottom + ',',
' "near" : ' + str(near) + ',',
' "far" : ' + str(far) + ',',
' "position" : ' + Vector3String( position ) + ( ',' if node.GetChildCount() > 0 else '' )
]
return generateMultiLineString( output, '\n\t\t', padding )
# #####################################################
# Generate - Mesh Object
# #####################################################
def generate_mesh_object_string(node, padding):
mesh = node.GetNodeAttribute()
transform = node.EvaluateLocalTransform()
position = transform.GetT()
scale = transform.GetS()
rotation = getRadians(transform.GetR())
material_count = node.GetMaterialCount()
material_name = ""
if material_count > 0:
material_names = []
for l in range(mesh.GetLayerCount()):
materials = mesh.GetLayer(l).GetMaterials()
if materials:
if materials.GetReferenceMode() == FbxLayerElement.eIndex:
#Materials are in an undefined external table
continue
for i in range(material_count):
material = node.GetMaterial(i)
material_names.append( getMaterialName(material) )
#If this mesh has more than one material, use a proxy material
material_name = getMaterialName( node, True) if material_count > 1 else material_names[0]
output = [
'\t\t' + LabelString( getObjectName( node ) ) + ' : {',
' "geometry" : ' + LabelString( getGeometryName( node, True ) ) + ',',
' "material" : ' + LabelString( material_name ) + ',',
' "position" : ' + Vector3String( position ) + ',',
' "rotation" : ' + Vector3String( rotation ) + ',',
' "scale" : ' + Vector3String( scale ) + ',',
' "visible" : ' + getObjectVisible( node ) + ( ',' if node.GetChildCount() > 0 else '' )
]
return generateMultiLineString( output, '\n\t\t', padding )
# #####################################################
# Generate - Object
# #####################################################
def generate_object_string(node, padding):
node_types = ["Unknown", "Null", "Marker", "Skeleton", "Mesh", "Nurbs", "Patch", "Camera",
"CameraStereo", "CameraSwitcher", "Light", "OpticalReference", "OpticalMarker", "NurbsCurve",
"TrimNurbsSurface", "Boundary", "NurbsSurface", "Shape", "LODGroup", "SubDiv", "CachedEffect", "Line"]
transform = node.EvaluateLocalTransform()
position = transform.GetT()
scale = transform.GetS()
rotation = getRadians(transform.GetR())
node_type = ""
if node.GetNodeAttribute() == None:
node_type = "Null"
else:
node_type = node_types[node.GetNodeAttribute().GetAttributeType()]
output = [
'\t\t' + LabelString( getObjectName( node ) ) + ' : {',
' "fbx_type" : ' + LabelString( node_type ) + ',',
' "position" : ' + Vector3String( position ) + ',',
' "rotation" : ' + Vector3String( rotation ) + ',',
' "scale" : ' + Vector3String( scale ) + ',',
' "visible" : ' + getObjectVisible( node ) + ( ',' if node.GetChildCount() > 0 else '' )
]
return generateMultiLineString( output, '\n\t\t', padding )
# #####################################################
# Parse - Objects
# #####################################################
def generate_object_hierarchy(node, object_list, pad, siblings_left):
object_count = 0
if node.GetNodeAttribute() == None:
object_string = generate_object_string(node, pad)
object_list.append(object_string)
object_count += 1
else:
attribute_type = (node.GetNodeAttribute().GetAttributeType())
if attribute_type == FbxNodeAttribute.eMesh:
object_string = generate_mesh_object_string(node, pad)
object_list.append(object_string)
object_count += 1
elif attribute_type == FbxNodeAttribute.eLight:
object_string = generate_light_string(node, pad)
object_list.append(object_string)
object_count += 1
elif attribute_type == FbxNodeAttribute.eCamera:
object_string = generate_camera_string(node, pad)
object_list.append(object_string)
object_count += 1
else:
object_string = generate_object_string(node, pad)
object_list.append(object_string)
object_count += 1
if node.GetChildCount() > 0:
object_list.append( PaddingString( pad + 1 ) + '\t\t"children" : {\n' )
for i in range(node.GetChildCount()):
object_count += generate_object_hierarchy(node.GetChild(i), object_list, pad + 2, node.GetChildCount() - i - 1)
object_list.append( PaddingString( pad + 1 ) + '\t\t}' )
object_list.append( PaddingString( pad ) + '\t\t}' + (',\n' if siblings_left > 0 else ''))
return object_count
def generate_scene_objects_string(scene):
object_count = 0
object_list = []
ambient_light = generate_ambient_light_string(scene)
if ambient_light:
if scene.GetNodeCount() > 0 or option_default_light or option_default_camera:
ambient_light += (',\n')
object_list.append(ambient_light)
object_count += 1
if option_default_light:
default_light = generate_default_light_string(0)
if scene.GetNodeCount() > 0 or option_default_camera:
default_light += (',\n')
object_list.append(default_light)
object_count += 1
if option_default_camera:
default_camera = generate_default_camera_string(0)
if scene.GetNodeCount() > 0:
default_camera += (',\n')
object_list.append(default_camera)
object_count += 1
node = scene.GetRootNode()
if node:
for i in range(node.GetChildCount()):
object_count += generate_object_hierarchy(node.GetChild(i), object_list, 0, node.GetChildCount() - i - 1)
return "\n".join(object_list), object_count
# #####################################################
# Parse - Geometry (non-scene output)
# #####################################################
def extract_geometry(scene, filename):
mesh_string = generate_mesh_string_for_non_scene_output(scene)
return mesh_string
# #####################################################
# Parse - Scene (scene output)
# #####################################################
def extract_scene(scene, filename):
global_settings = scene.GetGlobalSettings()
objects, nobjects = generate_scene_objects_string(scene)
textures = generate_texture_list(scene)
materials = generate_material_list(scene)
geometries = generate_geometry_list(scene)
embeds = generate_embed_list(scene)
fogs = []
ntextures = len(textures)
nmaterials = len(materials)
ngeometries = len(geometries)
#TODO: extract actual root/scene data here
position = Vector3String( (0,0,0) )
rotation = Vector3String( (0,0,0) )
scale = Vector3String( (1,1,1) )
camera_names = generate_camera_name_list(scene)
scene_settings = scene.GetGlobalSettings()
#TODO: this might exist as part of the FBX spec
bgcolor = Vector3String( (0.667,0.667,0.667) )
bgalpha = 1
# This does not seem to be any help here
# global_settings.GetDefaultCamera()
defcamera = LabelString(camera_names[0] if len(camera_names) > 0 else "")
if option_default_camera:
defcamera = LabelString('default_camera')
#TODO: extract fog info from scene
deffog = LabelString("")
geometries = generateMultiLineString( geometries, ",\n\n\t", 0 )
materials = generateMultiLineString( materials, ",\n\n\t", 0 )
textures = generateMultiLineString( textures, ",\n\n\t", 0 )
embeds = generateMultiLineString( embeds, ",\n\n\t", 0 )
fogs = generateMultiLineString( fogs, ",\n\n\t", 0 )
output = [
'{',
' "metadata": {',
' "formatVersion" : 3.2,',
' "type" : "scene",',
' "generatedBy" : "convert-to-threejs.py",',
' "objects" : ' + str(nobjects) + ',',
' "geometries" : ' + str(ngeometries) + ',',
' "materials" : ' + str(nmaterials) + ',',
' "textures" : ' + str(ntextures),
' },',
'',
' "urlBaseType": "relativeToScene",',
'',
' "objects" :',
' {',
objects,
' },',
'',
' "geometries" :',
' {',
'\t' + geometries,
' },',
'',
' "materials" :',
' {',
'\t' + materials,
' },',
'',
' "textures" :',
' {',
'\t' + textures,
' },',
'',
' "embeds" :',
' {',
'\t' + embeds,
' },',
'',
' "fogs" :',
' {',
'\t' + fogs,
' },',
'',
' "transform" :',
' {',
' "position" : ' + position + ',',
' "rotation" : ' + rotation + ',',
' "scale" : ' + scale,
' },',
'',
' "defaults" :',
' {',
' "bgcolor" : ' + str(bgcolor) + ',',
' "bgalpha" : ' + str(bgalpha) + ',',
' "camera" : ' + defcamera + ',',
' "fog" : ' + deffog,
' }',
'}'
]
return "\n".join(output)
# #####################################################
# file helpers
# #####################################################
def write_file(fname, content):
out = open(fname, "w")
out.write(content)
out.close()
# #####################################################
# main
# #####################################################
if __name__ == "__main__":
from optparse import OptionParser
try:
from FbxCommon import *
except ImportError:
import platform
msg = 'Could not locate the python FBX SDK!\n'
msg += 'You need to copy the FBX SDK into your python install folder such as '
if platform.system() == 'Windows' or platform.system() == 'Microsoft':
msg += '"Python26/Lib/site-packages"'
elif platform.system() == 'Linux':
msg += '"/usr/local/lib/python2.6/site-packages"'
elif platform.system() == 'Darwin':
msg += '"/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages"'
msg += ' folder.'
print(msg)
sys.exit(1)
usage = "Usage: %prog [source_file.fbx] [output_file.js] [options]"
parser = OptionParser(usage=usage)
parser.add_option('-t', '--triangulate', action='store_true', dest='triangulate', help="force quad geometry into triangles", default=False)
parser.add_option('-x', '--no-textures', action='store_true', dest='notextures', help="don't include texture references in output file", default=False)
parser.add_option('-p', '--prefix', action='store_true', dest='prefix', help="prefix object names in output file", default=False)
parser.add_option('-g', '--geometry-only', action='store_true', dest='geometry', help="output geometry only", default=False)
parser.add_option('-c', '--default-camera', action='store_true', dest='defcamera', help="include default camera in output scene", default=False)
parser.add_option('-l', '--defualt-light', action='store_true', dest='deflight', help="include default light in output scene", default=False)
(options, args) = parser.parse_args()
option_triangulate = options.triangulate
option_textures = True if not options.notextures else False
option_prefix = options.prefix
option_geometry = options.geometry
option_default_camera = options.defcamera
option_default_light = options.deflight
# Prepare the FBX SDK.
sdk_manager, scene = InitializeSdkObjects()
converter = FbxGeometryConverter(sdk_manager)
global_up_vector = get_up_vector(scene)
# The converter takes an FBX file as an argument.
if len(args) > 1:
print("\nLoading file: %s" % args[0])
result = LoadScene(sdk_manager, scene, args[0])
else:
result = False
print("\nUsage: convert_fbx_to_threejs [source_file.fbx] [output_file.js]\n")
if not result:
print("\nAn error occurred while loading the file...")
else:
if option_triangulate:
print("\nForcing geometry to triangles")
triangulate_scene(scene)
if option_geometry:
output_content = extract_geometry(scene, os.path.basename(args[0]))
else:
output_content = extract_scene(scene, os.path.basename(args[0]))
output_path = os.path.join(os.getcwd(), args[1])
write_file(output_path, output_content)
print("\nExported Three.js file to:\n%s\n" % output_path)
# Destroy all objects created by the FBX SDK.
sdk_manager.Destroy()
sys.exit(0)